2,917 research outputs found

    Modeling and Control of Robot-Structure Coupling During In-Space Structure Assembly

    Get PDF
    This paper considers the problem of robot-structure coupling dynamics during in-space robotic assembly of large flexible structures. A two-legged walking robot is used as a construction agent, whose primary goal is to stably walking on the flexible structure while carrying a substructure component to a designated location. The reaction forces inserted by the structure to the walking robot are treated as bounded disturbance inputs, and a trajectory tracking robotic controller is proposed that combines the standard full state feedback motion controller and an adaptive controller to account for the disturbance inputs. In this study, a reduced-order Euler-Bernoulli beam structure model is adapted, and a finite number of co-located sensors and actuators are distributed along the span of the beam structure. The robot-structure coupling forces are treated as a bounded external forcing function to the structure, and hence an output covariance constraint problem can be formulated, in terms of linear matrix inequality, for optimal structure control by utilizing the direct output feedback controllers. The numerical simulations show the effectiveness of the proposed robot-structure modeling and control methodology

    Robotic Specialization in Autonomous Robotic Structural Assembly

    Get PDF
    Robotic in-space assembly of large space structures is a long-term NASA goal to reduce launch costs and enable larger scale missions. Recently, researchers have proposed using discrete lattice building blocks and co-designed robots to build high-performance, scalable primary structure for various on-orbit and surface applications. These robots would locomote on the lattice and work in teams to build and reconfigure building-blocks into functional structure. However, the most reliable and efficient robotic system architecture, characterized by the number of different robotic 'species' and the allocation of functionality between species, is an open question. To address this problem, we decompose the robotic building-block assembly task into functional primitives and, in simulation, study the performance of the the variety of possible resulting architectures. For a set consisting of five process types (move self, move block, move friend, align bock, fasten block), we describe a method of feature space exploration and ranking based on energy and reliability cost functions. The solution space is enumerated, filtered for unique solutions, and evaluated against energy and reliability cost functions for various simulated build sizes. We find that a 2 species system, dividing the five mentioned process types between one unit cell transport robot and one fastening robot, results in the lowest energy cost system, at some cost to reliability. This system enables fastening functionality to occupy the build front while reducing the need for that functional mass to travel back and forth from a feed station. Because the details of a robot design affect the weighting and final allocation of functionality, a sensitivity analysis was conducted to evaluate the effect of changing mass allocations on architecture performance. Future systems with additional functionalities such as repair, inspection, and others may use this process to analyze and determine alternative robot architectures

    Androgynous Fasteners for Robotic Structural Assembly

    Get PDF
    We describe the design and analysis of an androgynous fastener for autonomous robotic assembly of high performance structures. The design of these fasteners aims to prioritize ease of assembly through simple actuation with large driver positioning tolerance requirements, while producing a reversible mechanical connection with high strength and stiffness per mass. This can be applied to high strength to weight ratio structural systems, such as discrete building block based systems that offer reconfigurability, scalability, and system lifecycle efficiency. Such periodic structures are suitable for navigation and manipulation by relatively small mobile robots. The integration of fasteners, which are lightweight and can be robotically installed, into a high performance robotically managed structural system is of interest to reduce launch energy requirements, enable higher mission adaptivity, and decrease system life-cycle costs

    OuroboroSat: A Modular, CubeSat-Scale Instrumentation Platform

    Get PDF
    OuroboroSat (also known as MRMSS: the Modular Rapidly Manufactured Spacecraft System) is a modular instrumentation platform consisting of multiple 3 inch (7.5 centimeter) square printed circuit boards that are mechanically and electrically connected to one another in order to produce a fully- functioning payload facility system. Each OuroboroSat module consists of a microcontroller, a battery, conditioning and monitoring circuitry for the battery, optional space for solar panels, and an expansion area where an experimental payload or specialized functionality (such as wireless communication submodules) can be attached

    Supplementary feeding with fortified spread among moderately underweight 6-18-month-old rural Malawian children.

    No full text
    We aimed to analyse growth and recovery from undernutrition among moderately underweight ambulatory children receiving micronutrient-fortified maize-soy flour (Likuni Phala, LP) or ready-to-use fortified spread (FS) supplementary diet. One hundred and seventy-six 6-18-month-old individuals were randomized to receive 500 g LP or 350 g FS weekly for 12 weeks. Baseline and end of intervention measurements were used to calculate anthropometric gains and recovery from underweight, wasting and stunting. Mean weight-for-age increased by 0.22 (95% CI 0.07-0.37) and 0.28 (0.18-0.40) Z-score units in the LP and FS groups respectively. Comparable increase for mean weight-for-length was 0.39 (0.20-0.57) and 0.52 (0.38-0.65) Z-score units. Recovery from underweight and wasting was 20% and 93% in LP group and 16% and 75% in FS group. Few individuals recovered from stunting and mean length-for-age was not markedly changed. There were no statistically significant differences between the outcomes in the two intervention groups. In a poor food-security setting, underweight infants and children receiving supplementary feeding for 12 weeks with ready-to-use FS or maize-soy flour porridge show similar recovery from moderate wasting and underweight. Neither intervention, if limited to a 12-week duration, appears to have significant impact on the process of linear growth or stunting

    Reconfigurable Cellular Composite Structures for Lighter than Air Vehicles with Scalable Size and Endurance

    Get PDF
    Engineered non-stochastic cellular materials show promising characteristics on the laboratory scale,with nearly ideal specific stiffness and strength scaling at ultralight mass density. These propertiessuggest performance benefits in any application with combined stiffness and mass constraints, suchas air vehicles. We investigate here the application of re-configurable cellular composite materialsand structures to lighter than air vehicles. We describe the properties and applicability of these materials,provide an example analysis of governing loading conditions associated with airships, showan example optimization method for navigating the design space, and describe how recent advancesin cellular material manufacturing and reconfiguration enable system performance benefits includingnew concepts of operation. Lastly, we propose lighter than air vehicles that are assembled andmaintained in-flight, eliminating structural compromises associated with transitional flight modesand ground handling.Engineered non-stochastic cellular material properties suggest performance benefits in lighter than air vehicles due tostiffness and mass constraints that are intrinsic to the airship design problem. Recent advances in cellular materialmanufacturing and reconfiguration enable system performance benefits including new concepts of operation, such aslighter than air vehicles that are assembled and maintained in-flight, eliminating structural compromises associatedwith transitional flight modes and ground handling. Existing engineered cellular materials display properties allowinglarge large scale airships design as monocoque cellular solids. Inevitable improvements in cellular material propertiesand manufacturing will improve feasibility even further. Given the suggestion that the two most significant technologygaps exist across all current airship projects are manufacturing and assembly processes and ground handling [7],a strategy that encompasses construction and maintenance in flight could provide critical rephrasing of the systemdesign problem through these new concepts of operation. Refactoring of traditional manufacturing, operation, andservice process constraints could extend to other domains in aerospace systems and manufacturing in general.In future work, the complexity of the design task would benefit from a form of optimization in order to find themost suitable geometry for a chosen application. For example, the Sequential Least SQuares Programming (SLSQP)function from within the SciPy Minimize library is a multiobjective constrained optimization method that has beenapplied to fixed wing aircraft design. [17] In this situation it would allow for several objective functions such as drag,bending stiffness, buoyancy and cost of transport to be incorporated into a composite objective function
    • …
    corecore